PlasticsPatents Home

Maropolymeronline.com

 

Catalysts ©

Notes

Patentpedia Index 

2/13/2016

Patent Abstracts

Patent Titles 57N

Topics

Subtopics

Notes

..............................................................................

xxxxxxxx   (Notes)   (Patent Titles)   (Patent Abstracts)

Topics

Reactions   (Notes 1N)   (Patent Titles 52T)   (Patent Abstracts)

...........................................................................................

Subtopics

............................................................................

Notes 1N

1. Introduction

“Catalysis is the increase in rate of a chemical reaction due to the participation of a substance called a catalyst. Unlike other reagents that participate in the chemical reaction, a catalyst is not consumed by the reaction itself. A catalyst may participate in multiple chemical transformations. The effect of a catalyst may vary due to the presence of other substances known as inhibitors or poisons (which reduce the catalytic activity) or promoters (which increase the activity).

Catalytic reactions have a lower rate-limiting free energy of activation than the corresponding uncatalyzed reaction, resulting in higher reaction rate at the same temperature. However, the mechanistic explanation of catalysis is complex. Catalysts may affect the reaction environment favorably, or bind to the reagents to polarize bonds, e.g. acid catalysts for reactions of carbonyl compounds, or form specific intermediates that are not produced naturally, such as osmate esters in osmium tetroxide-catalyzed dihydroxylation of alkenes, or cause dissociation of reagents to reactive forms, such as chemisorbed hydrogen in catalytic hydrogenation.

Kinetically, catalytic reactions are typical chemical reactions; i.e. the reaction rate depends on the frequency of contact of the reactants in the rate-determining step. Usually, the catalyst participates in this slowest step, and rates are limited by amount of catalyst and its "activity". In heterogeneous catalysis, the diffusion of reagents to the surface and diffusion of products from the surface can be rate determining. A nanomaterial-based catalyst is an example of a heterogeneous catalyst. Analogous events associated with substrate binding and product dissociation apply to homogeneous catalysts.

Although catalysts are not consumed by the reaction itself, they may be inhibited, deactivated, or destroyed by secondary processes. In heterogeneous catalysis, typical secondary processes include coking where the catalyst becomes covered by polymeric side products. Additionally, heterogeneous catalysts can dissolve into the solution in a solid–liquid system or evaporate in a solid–gas system”

(Catalysts, Wikipedia, 3/13/2013)

***********************************

Copyright 2016 by Roger D. Corneliussen.
No part of this transmission is to be duplicated in any manner or forwarded by electronic mail without the express written permission of Roger D. Corneliussen

***********************************

Roger D. Corneliussen, Editor
Professor Emeritus
Materials Engineering
Drexel University, Philadelphia, PA
Editor
Maro Publications
327 Huffman Drive
Exton, PA 19341
Telephone: 610 363 1533
Email:
cornelrd@bee.net
Website: 
http://maropolymeronline.com/