PlasticsPatents Home

Maropolymeronline.com

 

Plasma ©

1 Notes ©

Patentpedia Index 

3/16/2016 through 3/15/2016

0 Patent Abstracts

0 Patent Titles

1 Topics

1 Subtopics

1 Notes

...............................................................................

1 Topics

B. Matter   (1 Topics) (0 Subtopics) (1 Notes )   (0 Patent Titles )   (0 Patent Abstracts ) (3/15/2016)

...............................................................................

1 Subtopics

D. Plasma Applications   (2 Topics) (1 Subtopics) (1 Notes )   (13 Patent Titles )   (1 Patent Abstracts) (3/16/2016)

...............................................................................

...............................................................................

1 Notes

1. Plasma  

...............................................................................

1. Plasma

“ ‘Plasma (from Greek πλάσμα, "anything formed") is one of the four fundamental states of matter, the others being solid, liquid, and gas. A plasma has properties unlike those of the other states.

A plasma can be created by heating a gas or subjecting it to a strong electromagnetic field applied with a laser or microwave generator. This decreases or increases the number of electrons, creating positive or negative charged particles called ions, and is accompanied by the dissociation of molecular bonds, if present.

The presence of a significant number of charge carriers makes plasma electrically conductive so that it responds strongly to electromagnetic fields. Like gas, plasma does not have a definite shape or a definite volume unless enclosed in a container. Unlike gas, under the influence of a magnetic field, it may form structures such as filaments, beams and double layers.

Plasma is the most abundant form of ordinary matter in the Universe (of the forms proven to exist; the more abundant dark matter is hypothetical and may or may not be explained by ordinary matter), most of which is in the rarefied intergalactic regions, particularly the intracluster medium, and in stars, including the Sun. A common form of plasmas on Earth is seen in neon signs.

Much of the understanding of plasmas has come from the pursuit of controlled nuclear fusion and fusion power, for which plasma physics provides the scientific basis.”

"A plasma is an electrically neutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero). It is important to note that although they are unbound, these particles are not ‘free’ in the sense of not experiencing forces. When the charges move, they generate electric currents with magnetic fields, and as a result, they are affected by each other’s fields. This governs their collective behavior with many degrees of freedom. A definition can have three criteria::

1. The plasma approximation: Charged particles must be close enough together that each particle influences many nearby charged particles, rather than just interacting with the closest particle (these collective effects are a distinguishing feature of a plasma). The plasma approximation is valid when the number of charge carriers within the sphere of influence (called the Debye sphere whose radius is the Debye screening length) of a particular particle is higher than unity to provide collective behavior of the charged particles. The average number of particles in the Debye sphere is given by the plasma parameter,[ambiguous] "Λ" .

2. Bulk interactions: The Debye screening length (defined above) is short compared to the physical size of the plasma. This criterion means that interactions in the bulk of the plasma are more important than those at its edges, where boundary effects may take place. When this criterion is satisfied, the plasma is quasineutral.

3. Plasma frequency: The electron plasma frequency (measuring plasma oscillations of the electrons) is large compared to the electron-neutral collision frequency (measuring frequency of collisions between electrons and neutral particles). When this condition is valid, electrostatic interactions dominate over the processes of ordinary gas kinetics.”

Plasma: Wikipedia, 3/15/2016.

***********************************

Copyright 2016 by Roger D. Corneliussen.
No part of this transmission is to be duplicated in any manner or forwarded by electronic mail without the express written permission of Roger D. Corneliussen

***********************************

Roger D. Corneliussen, Editor
Professor Emeritus
Materials Engineering
Drexel University, Philadelphia, PA
Editor
Maro Publications
327 Huffman Drive
Exton, PA 19341
Telephone: 610 363 1533
Email:
cornelrd@bee.net
Website: 
http://maropolymeronline.com/